
Abstract: Procedural Content Generation (PCG) is a cornerstone of modern game development, enabling the

automatic creation of game levels, characters, and narratives. This paper presents a novel methodology for

PCG using Generative Datalog (GDatalog), a rule-based language extended with probabilistic capabilities. By

treating the game state and previously generated elements as logical facts and representing generation rules

as probabilistic GDatalog programs, we provide a declarative framework for content generation. Our

approach iteratively maps the evolving game state to new game elements, ensuring both variability and

adherence to gameplay constraints. The methodology is demonstrated through examples, highlighting its

ability to produce diverse, context-sensitive content while maintaining logical consistency. This work lays the

groundwork for structured, rule-driven PCG pipelines that leverage logical inference and probabilistic

reasoning to enrich player experiences.

Keywords: Procedural content generation, probabilistic logic programming, answer set programming,
declarative programming

1. Introduction

Procedural Content Generation (PCG) has become an integral part of modern game development, enabling

developers to create diverse and engaging content efficiently. From generating randomized dungeon layouts

to crafting adaptive narratives, PCG offers a flexible approach to content creation that enhances replayability

and reduces manual design effort. However, achieving both creativity and control in PCG remains a

challenging problem, particularly when balancing randomness with adherence to gameplay constraints.

Recent advances in AI-driven methods, such as the integration of reinforcement learning and generative

models like Generative Adversarial Networks (GANs), have pushed the boundaries of content generation in

games (e.g., PCGPT for iterative content creation) [1, 2].

To address this challenge, we explore the use of Generative Datalog (GDatalog) [3–6] as a framework for

PCG. GDatalog is an extension of the Datalog language, incorporating probabilistic reasoning into its

declarative, rule-based structure. This allows developers to encode game mechanics, constraints, and

probabilistic generation processes in a clear and modular manner. By treating the game state and previously

generated elements as facts, and leveraging GDatalog rules to produce new content, our approach ensures

that generated outputs are both diverse and logically consistent. This approach aligns with ongoing research

in PCG, which has been conceptualized as influencing key aspects of game mechanics, dynamics, and player

aesthetics [7].

Journal of Advances in Artificial Intelligence

Generative Datalog for Procedural Content Generation in
Video Games

Mario Alviano*, Pasquale Tudda

Department of Mathematics and Informatics, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy.

* Corresponding author. Tel.: +39 0984 496473; email: mario.alviano@unical.it (M.A.)
Manuscript submitted December 12, 2024; revised December 25, 2024; December 31, 2024; published
March 12, 2025.

90 Volume 3, Number 1, 2025

doi: 10.18178/JAAI.2025.3.1.90-108

mailto:mario.alviano@unical.it

In this paper, we propose a methodology for PCG that leverages the power of GDatalog. The central idea is

to model the probabilistic functions driving content generation as GDatalog programs. These programs define

how elements of the game world should be generated based on the evolving state of the game. The game state

and previously generated elements are represented as input facts in GDatalog, which may include positions

of entities, current player status, and other relevant conditions within the game world. These facts serve as

the foundational input from which new content is derived. The generated elements, such as newly spawned

objects, enemies, or environmental features, are produced by applying rules encoded in GDatalog to the

existing facts. The output of this process is the answer set, a collection of newly derived facts that represents

the updated game world. These facts include both the newly generated elements and any adjustments to

existing elements based on the probabilistic generation rules.

This approach introduces a structured and iterative process to PCG, where each step generates content

based on the most current game state and prior elements. The rules can adapt to dynamic changes in the

game, making it well-suited for real-time, evolving environments where the game state continuously

influences the content generation process. As each new answer set is generated, the game world is updated,

ensuring that the content produced remains relevant and contextually appropriate for the player’s actions

and the overall game progression. Moreover, by incorporating probabilistic rules, we introduce variability

into the content generation process, which enhances replayability and provides players with unique

experiences in each playthrough. This allows for greater control over content diversity while ensuring that

generated elements maintain logical consistency and coherence with the rest of the game world. The

declarative nature of GDatalog ensures that these rules are easily understandable, reusable, and modifiable,

making it a powerful tool for developers aiming to create procedurally generated content that adheres to both

creative and gameplay constraints.

By utilizing GDatalog’s logical inference capabilities and probabilistic modeling, our methodology draws

from established concepts in procedural content generation while introducing a flexible, scalable framework

that can handle complex game worlds and dynamic content generation needs. This method also builds upon

prior work in logic programming for PCG, where the use of formal languages like Datalog has been explored

for defining generation rules and ensuring content consistency across varied game states [8–11].

The rest of this paper is organized as follows: we first provide the required background about GDatalog

and PCG. Next, we describe the methodology for content generation using GDatalog, including its

representation of game state, definition of probabilistic rules, and computation of answer sets. We then apply

the methodology to the Godot engine through a case study, highlighting its effectiveness in generating diverse

and constrained content. Finally, we conclude by discussing the implications of this approach for game

development and potential directions for future work.

2. Background

2.1. Generative Datalog

Generative Datalog (GDatalog) is a probabilistic extension of the traditional Datalog declarative language,

aimed at modeling uncertainty and randomness in relational databases. This framework allows for the

specification of probabilistic models through a declarative syntax that maintains the key properties of Datalog

while incorporating stochastic behaviors such as random sampling and probabilistic choices [3] by leveraging

∆-terms, primitive constructs for representing parametrized probability distributions [5].

GDatalog programs consist of two main components:

• Generative Component: This allows for sampling from discrete probability distributions, where the output

is a probability space over the minimal models derived from the input database and the program itself.

• Constraint Component: This imposes logical constraints that must be satisfied by the possible outcomes,

Journal of Advances in Artificial Intelligence

91 Volume 3, Number 1, 2025

effectively conditioning the generated distributions based on these constraints.

The generative component enables GDatalog to define a rich family of probabilistic models while retaining

a declarative nature, meaning that the execution order of rules does not affect the final outcome. In this work,

we focus on the generative component of GDatalog.

The linguistic extension introduced by GDatalog, i.e., ∆−terms, are expressions used to represent

parameterized numerical probability distributions. Formally, a ∆−term has the form

δ ⟨ p⟩ [q]

where p is a is a non-empty tuple of terms representing distribution parameters and q is an optional tuple

representing an event signature. The event signature serves to differentiate between different contexts or

scenarios under which the probability distribution δ ⟨ p⟩ is applied [3].
Given the applied nature of this article, hereinafter we opt for the syntax used in the currently available

implementation (https://github.com/alviano/gdatalog), that is,

@delta(distribution_name(params), signature)

where distribution_name is the selected δ, params is the list of parameters, and signature is the optimal event

signature.

Example 1. Let us consider a scenario in which a coin is flipped ten times, and one more time in case there

is the need for a tie-breaking. We are interested in the most frequent outcome. The following GDatalog

program encodes such a scenario:

event(1..10).

result(EventID, @delta(flip(1, 2), EventID)) :- event(EventID).

heads(N) :- N = #count{EventID : result(EventID, 0)}.

tails(N) :- N = #count{EventID : result(EventID, 1)}.

tie_break_result(@delta(flip(1, 2))) :- heads(N), tails(N).

#show.

#show heads : heads(H), tails(T), H > T.

#show tails : heads(H), tails(T), T > H.

#show heads : tie_break_result(0).

#show tails : tie_break_result(1).

Above, the first rule produces ten facts of the form event(i), for i = 1..10. Each of these facts triggers the

sampling of one outcome of the flip distribution with parameters (1, 2), that is, 0 (for heads) or 1 (for tails)

are sampled with probability 0.5. After that, the number of heads and tails are determined by aggregating the

observed outcomes. If a tie-breaking is needed, the coin is tossed one last time and the result is stored in the

predicate tie_break_result. Finally, the interest for the event “most frequent outcome” is represented by the

#show directives.

The integration of stable negation into GDatalog [4, 5] enhances its expressiveness by allowing the

representation of non-monotonic properties, which traditional GDatalog cannot accommodate due to its

inherently monotonic nature. Stable negation is interpreted according to stable model semantics, a concept

rooted in logic programming that provides a robust framework.

Example 2. Stable negation is implicitly used in the GDatalog program shown in Example 1. Indeed, the

semantics of the #count aggregate can be defined in terms of stable negation.

2.2. Godot Engine

The Godot Engine is a feature-packed, open-source and cross-platform game engine to create 2D and 3D

games from a unified interface [12], so that the developers have the possibility to shape their engine to match

their expectations retaining the full ownership of their games. Godot supports multiple programming

Journal of Advances in Artificial Intelligence

92 Volume 3, Number 1, 2025

https://github.com/alviano/gdatalog

paradigms, with native support for its own high-performance scripting language, GDScript, which is

syntactically similar to Python. Additionally, the engine provides bindings for multiple languages including

C#, C++, and visual scripting, making it accessible to developers with diverse programming backgrounds.

Unlike many proprietary game engines, Godot is built with a node-based architecture that offers an

exceptional modularity and extensibility. A node is a single component or object that has a specific purpose,

as a matter of example, in Godot there are nodes that represents visual elements, e.g., AnimatedSprite2D,

nodes that handles physics simulations and interaction e.g. Collider2D and InteractionArea2D, and many

others that varies from Control nodes for UI elements to nodes that handles audio sources e.g.,

AudioStreamPlayer. The engine makes use of a scene system where every element of the game, from user

interfaces and environment to characters, are scenes built as a hierarchical node structure. This design allows

for intuitive composition and rapid prototyping, enabling developers to create complex and modular scenes.

We illustrate the main elements involved in the setup of Godot scenes by means of an example.

Fig. 1. Node hierarchy of floor, room and door scene.

Example 3. Fig. 1 shows an example of scenes in Godot that can be used for facilitating dynamic content

generation. Note that the three roots, namely Floor, Room and Door, occur also as inner nodes of other trees.

This approach leverages a decoupled way of bounding together related elements of the game, as for example

rooms and doors. A Door is unaware of the existence of the Room in which it is contained, and similarly a

Room is unaware of the Floor to which it is part of.

Focusing on the Floor scene, we observe that the root is a Node2D with a script attached. The script contains

the code related to room management, and the rooms themselves are contained in the leaf Node2D node.

Regarding the Room scene, it features various node types:

• Walls, Obstacles and Decorations: three TileSetLayer nodes comprising the tiles regarding the

aesthetics elements of rooms.

• NavigationRegion2D: a node defining the boundaries of the room on which nodes of type

NavigationAgent2D (the enemy character) can walk on.

• Doors: a simple Node2D that contains the Door nodes of the room.

• Pickups: a Node2D containing spawner nodes that introduce new collectible elements in the room.

• EnemySpawners: a Node2D like the previous node but spawning enemies.

The Door scene includes:

• Sprite2D: a node used for the visual representation of the door.

• Collision and InteractionArea nodes, essential for handling the interaction of and the collisions with

the player.

3. Methodology for Procedural Content Generation with GDatalog

Procedural Content Generation (PCG) refers to the automated creation of game content through

algorithmic processes, significantly enhancing both the efficiency and variety of content in video games. PCG

Journal of Advances in Artificial Intelligence

93 Volume 3, Number 1, 2025

has emerged as a critical area of research and application within game development. This approach leverages

various methodologies from fields such as artificial intelligence, computational intelligence, computer

graphics, and discrete mathematics to generate a wide array of game elements, including levels, characters,

quests, and environments. Using a declarative approach such as Generative Datalog can provide a powerful

and flexible framework for PCG because it leverages the logical nature of Generative Datalog to provide a

simple way to specify high level constraints and rules.

To utilize GDatalog for PCG in game development, we can define a structured approach that leverages its

probabilistic and declarative capabilities. This approach involves the integration of generative components

and constraints to create diverse and dynamic game content. In particular, the proposed methodology

involves the following steps:

1. representing the game state and generated elements as facts

2. defining probabilistic generation rules

3. generating the answer set and interpret it as new generated elements

3.1. Representing the Game State and Generated Elements as Facts

The procedural generation process starts by encoding the current state of the game and previously

generated elements as facts in GDatalog. This representation serves as the knowledge base for content

generation. Facts are atomic and declarative, making them easily interpretable and adaptable.

• Game State Facts: These describe the static and dynamic aspects of the game, such as:

o Spatial configuration: level_size(10, 10), player_position(5, 5).

o Resource constraints: available_resources(health_potion, 3).

o Gameplay mechanics: difficulty(high) or weather(rainy).

• Generated Element Facts: These represent elements created in previous steps. For example:

o Placed enemies: enemy(goblin, (3, 3)).

o Items: item(health_potion, (2, 6)).

By organizing information as facts, the game environment and its evolving state become explicitly defined,

enabling robust, rule-based reasoning in subsequent steps.

3.2. Defining Probabilistic Generation Rules

The core of the PCG methodology lies in defining probabilistic generation rules in GDatalog. These rules

map the current state of the game and previously generated elements to new content, incorporating

constraints and randomness.

A strength of using GDatalog rules is their declarative nature, which eases the description of relationships

and dependencies among elements of the game. Moreover, GDatalog rules can ensure that generated content

adheres to logical and gameplay-specific requirements. The use of ∆−terms introduces variability and ensure

diverse outcomes.

Example 4. Consider the following GDatalog program:

% Spawn enemies with weighted probabilities based on difficulty

enemy(Type, Location) :- valid_spawn_location(Location), difficulty(high),

 Type = @delta((orc(7), troll(3)), Location).

Here, the rule generates enemies with a 70% chance of being an orc and 30% chance of being a troll at valid

locations. Similarly, the following GDatalog program distribute items according to a probability distribution:

% Generate health potions with a probability of 50% for any unoccupied location

item(health_potion, Location) :- valid_item_location(Location),

 @delta((health_potion(1), none(1), Location)) == health_potion.

In the above programs, the valid locations can be determined by additional rules. For example, the following

Journal of Advances in Artificial Intelligence

94 Volume 3, Number 1, 2025

two rules:

valid_spawn_location(Location) :-

 possible_spawn_location(Location), not occupied(Location).

valid_item_location(Location) :-

 possible_item_location(Location), not occupied(Location).

This approach simplifies complex generation problems by breaking them down into logical rules, enabling

reusable and composable content generation.

3.3. Generating the Answer Set and Interpret It as New Generated Elements

The final step is computing the answer set using the GDatalog engine. This process involves applying the

defined rules to the input facts, generating a new set of facts that represent the created content.

 Example 5. Let us consider the following GDatalog program, including facts:

player_position((5, 5)). % coordinates in a 2D game

level_size(10, 10). % 10x10 grid

difficulty(high). % no fear no more!

possible_spawn_location((3, 3)).

possible_spawn_location((8, 7)).

possible_spawn_location((3, 9)).

possible_item_location((1, 1)).

possible_item_location((10, 10)).

% a goblin was previously generated at location (3, 3)

previous_element(enemy, goblin, (3, 3)).

% Generate new elements

enemy(Type, Location) :- valid_spawn_location(Location), difficulty(high),

 Type = @delta((orc(7), troll(3)), Location).

item(health_potion, Location) :- valid_item_location(Location),

 @delta((health_potion(1), none(1), Location)) == health_potion.

% aux rules

occupied(Location) :- player_position(Location).

occupied(Location) :- previous_element(_, _, Location).

valid_spawn_location(Location) :-

 possible_spawn_location(Location), not occupied(Location).

valid_item_location(Location) :-

 possible_item_location(Location), not occupied(Location).

#show.

#show enemy/2.

#show item/2.

Journal of Advances in Artificial Intelligence

95 Volume 3, Number 1, 2025

A possible outcome is the generation of the facts

enemy(orc, (3, 9))

enemy(troll, (8, 7))

That is, one orc and one troll must be spawned at locations (3, 9) and (8, 7), respectively, and no item must

be dropped. Such an outcome has probability close to 13%. These elements are then incorporated into the

knowledge base for subsequent iterations of generation.

4. Application to Godot

This section reports on the application of PCG using GDatalog in the development of a top-down, 2D,

roguelike game written in Godot (https://github.com/ryuk4real/the-binding-of-UNICAL). The game itself is

written using the Godot native GDScript programming language, and GDatalog is used as an external service.

The roguelike genre is characterized by levels generated procedurally that leverages replayability and

provide players with a unique experience on each session. The game uses PCG techniques to dynamically

create various elements such as rooms, enemies and collectibles. Also, the game is set within the University

of Calabria so that the player can navigate various locations that aesthetically mirror the university’s indoor

environments, including hallways, classrooms, laboratories and restrooms. Within each of these rooms,

players encounter enemies that actively attempt to engage them in combat (see Fig. 2). The player is equipped

with the ability to shoot projectiles to defeat these adversaries. If the player clears a room, meaning that the

player defeats all the enemies present in the current room, the player might find a reward that can be an item

that restores health or a power-up. The player can also use the stairs located in the hallway, at the starting

point of each floor, to access the next floor.

Fig. 2. The player surrounded by enemies inside a classroom.

4.1. Establishing a Connection between Godot and GDatalog

The Godot game engine and the GDatalog implementation use different languages and different paradigms

so that a non-trivial issue occurred during the development of the game. This issue was making the two

systems communicate in a simple and straightforward way. To solve this problem, we added a server to the

Python implementation of GDatalog so to enable HTTP communication using JSON notation. The server is

implemented using FastAPI, which is a modern, fast (high-performance), web framework for building APIs

with Python [13].

The server contains a POST method that receives a request in JSON format. The request contains:

Journal of Advances in Artificial Intelligence

96 Volume 3, Number 1, 2025

https://github.com/ryuk4real/the-binding-of-UNICAL

• program: the GDatalog program;

• max_stable_models: a field that limits the number of stable models that results from the execution of

the program.

The response contains:

• model: a field which is a list of the stable models that results from the execution of the GDatalog

program;

• state: a field that specifies the state of the execution of the GDatalog program;

• delta_terms: a field which is the list of the calculation of the ∆−terms that results in the outcome

probabilities of the program.

The following block of code presents the code of the POST method of the server (simplified to ease the

presentation):

@app.post("/run/")

async def _(request: Request):

 json = await request.json()

 try:

 max_stable_models = \

 int(json["max_stable_models"]) if "max_stable_models" in json else 1

 program = Program(json["program"], max_stable_models=max_stable_models)

 sms = program.sms()

 return {

 "state": str(sms.state),

 "models": [

 [atom_to_json(atom) for atom in model] for model in sms.models],

 "delta_terms": [str(delta_term) for delta_term in sms.delta_terms],

 }

 except Exception as e:

 return {"error": str(e)}

To run the server from the command line, the server keyword must be specified, as shown next:

$ poetry run python gdatalog/gdatalog_cli.py -f [filename] server

Once the server is running, Godot can establish a connection by using a Worker comprising a HTTPRequest

node, which is run when the game starts. The following code shows how a program can be exchanged for one

of its probabilistic answer sets (or stable models) using the Worker and the GDScript language:

func _get_answerset_from_worker(_program: String) -> Array:

 worker.post(_program)

 await SignalBus.response_ready

 var response = worker.response.get("models")

 return response

4.2. Floor Generation

The implementation of the floor generation process is carried out by the FloorGenerator node, which is

Journal of Advances in Artificial Intelligence

97 Volume 3, Number 1, 2025

embedded in the main scene's hierarchy. Such a node employs the Worker introduced in the previous section

to communicate with the GDatalog server in order to produce the elements of the generated floor. In

particular, the process of generating the Floor starts with the instantiation of a Floor node in the hierarchy of

the main scene. After that, the initial room, which is by default of type HALLWAY, is added to the Floor instance.

Subsequently, the newly instantiated room is added to a queue of rooms that are prepared for processing. For

each room within such a queue, as well as for each door associated with these rooms, a request is submitted

to the GDatalog server. This request aims to ascertain the potential type of door, and consequently the type

of the room that could be appropriately positioned adjacent to the current door. The program of the request

is determined by the type of the current processing room, since there are constraints on which type of

neighbor a room can have. The _get_room_neighbor_type function (shown below) requires as argument the

type of the room under processing and the facts that refers to the current floor. These atoms are generated as

the rooms are placed. The GDatalog programs needed in these methods are directly read from the file when

the game starts. The following is the encoding of the state of the Floor that is appended to the GDatalog

program.

room(ID). current_room(ROOM_ID). neighbours(ROOM_ID1, ROOM_ID2).

The following code is precisely how the type of the neighbor to place is requested based on the type of the

current room in process:

func _get_room_neighbour_type(

 room_type: int, _floor_atoms: Array[String] = []) -> int:

 var type_answer_set: Array

 var program: String

 for atom: String in _floor_atoms:

 program += atom

 program += Global.current_floor.current_room_atom

 match(room_type):

 Global.ROOM_TYPE_HALLWAY:

 program += hallway_neighbour_type_guesser_program

 type_answer_set = await _get_answerset_from_worker(program)

 Global.ROOM_TYPE_INNER_HALLWAY:

 program += inner_hallway_neighbour_type_guesser_program

 type_answer_set = await _get_answerset_from_worker(program)

 Global.ROOM_TYPE_CLASSROOM:

 program += inner_hallway_neighbour_type_guesser_program

 type_answer_set = await _get_answerset_from_worker(program)

 Global.ROOM_TYPE_LIBRARY:

 program += library_neighbour_type_guesser_program

 type_answer_set = await _get_answerset_from_worker(program)

 return type_answer_set[0][0].get("arguments")[0].get("number")

Journal of Advances in Artificial Intelligence

98 Volume 3, Number 1, 2025

The following GDatalog program encapsulates the logic and rules of the room generation process passing

a distribution as argument to the ∆−term and it gives as result a stable model that contains an atom that

encodes the type of the room that will be placed. The GDatalog program is responsible for deriving the type

of possible neighbours of an INNER_HALLWAY room, but the same reasoning is used on the program of the

other types of room.

#const none = 999.

#const inner_hallway = 1.

#const classroom = 3.

#const office = 4.

#const storage = 5.

#const library = 6.

type(classroom). type(office). type(storage). type(library).

% Generate neighbours both ways

neighbours(ROOM_ID1, ROOM_ID2) :- neighbours(ROOM_ID2, ROOM_ID1).

% Count all neighbours of current room for each room type

room_type_counter(TYPE, COUNT):- current_room(ROOOM_ID, TYPE2), type(TYPE),

 COUNT = #count { NEIGHBOUR_ROOM_ID, TYPE :

 neighbours(ROOM_ID, NEIGHBOUR_ROOM_ID),

 room(NEIGHBOUR_ROOM_ID, TYPE)

 }.

% If current room has no neighbours of a certain type, the count is 0

room_type_counter(TYPE, COUNT):- COUNT = 0, type(TYPE),

 current_room(ROOM_ID1, _), room(ROOM_ID2, TYPE),

 not neighbours(ROOM_ID1, ROOM_ID2).

% If room types have been counted weights are calculated

room_weights(W2, W3, W4, W5) :-

 room_type_counter(classroom, W2), room_type_counter(office, W3),

 room_type_counter(storage, W4), room_type_counter(library, W5).

% If room types have been counted a weighted distribution is applied where the

probability of having a room of a certain type as a neighbour is increased by

the number of rooms of that type already counted

inner_hallway_neighbour_type(X) :- room_weights(W2, W3, W4, W5),

 X = @delta((

 (none, 1),

 (inner_hallway, 1),

 (classroom, 3 + W2),

 (office, 3 + W3),

 (storage, 2 + W4),

Journal of Advances in Artificial Intelligence

99 Volume 3, Number 1, 2025

 (library, 2 + W5))

).

#show inner_hallway_neighbour_type/1.

The code is properly commented to facilitate the understanding of the meaning of each rule but the key

point is that the distribution that describes the probability mass function of the type of the rooms that can be

placed is updated dynamically during the generation of the rooms updating the weights according to the

number of neighbours of the same type already placed.

An opposite approach is used for deriving the type of HALLWAYS. In that case the weights are swapped so

that if a particular type of room has already been placed the probability of having a room of a different type

increases by the number of rooms of that type that has been placed. To avoid redundancy the following piece

of code shows just the ∆-term and the associated distribution and weights.

room_weights(W1, W2) :-

 room_type_counter(inner_hallway, W1),

 room_type_counter(bathroom, W2).

hallway_neighbour_type(X) :- room_weights(W1, W2),

 X = @delta((

 (none,2),

 (inner_hallway,2 + W2),

 (bathroom,1 + W1)

)

).

#show hallway_neighbour_type/1.

Once the type of the room to be placed is determined, the algorithm proceeds to randomly select a room

from a pool of preloaded rooms that corresponds to the direction of the current door. The algorithm then

attempts to position the selected room adjacent to that door. To assess whether the room can be placed, a

support matrix is employed. This matrix is incorporated in the Floor scene through code initialized at the

beginning of the generation with a default value of −1. During the generation, if a tile of the room can be

placed, meaning that there is sufficient available space, the values at the positions in the matrix are updated

from −1 to the id of the newly placed room.

When evaluating whether the room can be positioned in a given location, it is ensured that no other rooms

overlap at those positions. If these conditions are satisfied, the room is successfully placed, and a map of

connections within the room is updated. The map contained in the Floor scene contains information about

the doors in a way to facilitate the connectivity between rooms. If a Room cannot be placed or it has as type

none, the current door in process is set as placeholder and locked, so that it is not visible in the game and the

player cannot interact with it.

4.3. Enemies’ Generation

A similar approach—as the one presented in the previous section—is employed for the generation of

enemies within each room. Specifically, for each EnemySpawner node in the room, a request is made to the

GDatalog server to determine the type of enemy to spawn. Then an instance of the enemy is selected from a

preloaded pool of enemy scenes. To facilitate this process, information regarding the enemies spawned in the

current room is encoded into Datalog atoms and appended to the GDatalog program.

Journal of Advances in Artificial Intelligence

100 Volume 3, Number 1, 2025

current_room(ROOM_ID, TYPE)

enemy(ROOM_ID, ENEMY_ID, ENEMY_TYPE)

The weights of the distribution are calculated by counting the number of enemies by type, to increase on

each call the probability of spawning the less frequent enemy. To avoid redundancy part of the code is

intentionally omitted.

enemy_weights(W1,W2) :- enemy_counter(zombie,W1), enemy_counter(student,W2).

% If enemy types have been counted, I apply a weighted distribution where the

probability of having an enemy of a certain type is increased the less enemies

of that type have been counted.

enemy_type(X) :- enemy_weights(W1, W2),

 X = @delta((

 (none, 1),

 (zombie, 1 + W2),

 (student, 1 + W1))

).

#show enemy_type/1.

4.4. Collectibles Generation

Collectibles are not generated during the floor generation algorithm, but they are generated each time a

room is cleared from enemies. Upon the defeat of the final enemy of the room, a request is made to the

GDatalog server, which includes the GDatalog program of the collectible’s generation, along with the Datalog

atoms representing the player’s state. The player’s state contains parameters such as health points (hp),

movement speed, damage output, and the speed and rate of fire of projectiles.

player_stat(damage, 100).

player_stat(max_damage, 100).

player_stat(shot_speed, 200).

player_stat(max_shot_speed, 200).

player_stat(shot_rate, 5).

player_stat(min_shot_rate, 1).

player_stat(speed, 100).

player_stat(max_speed, 150).

player_stat(current_hp, 51).

player_stat(max_hp, 100).

To derive the weights that regulate the collectibles distribution the percentage of each stat is calculated

based on its maximum (or minimum).

stat_percentage(hp, PERCENTAGE) :-

 player_stat(current_hp, CURRENT_HP),

 player_stat(max_hp, MAX_HP),

Journal of Advances in Artificial Intelligence

101 Volume 3, Number 1, 2025

 PERCENTAGE = (CURRENT_HP * 100) / MAX_HP.

stat_percentage(speed, PERCENTAGE) :-

 player_stat(speed, SPEED),

 player_stat(max_speed, MAX_SPEED),

 PERCENTAGE = (SPEED * 100) / MAX_SPEED.

stat_percentage(shot_speed, PERCENTAGE) :-

 player_stat(shot_speed, SHOT_SPEED),

 player_stat(max_shot_speed, MAX_SHOT_SPEED),

 PERCENTAGE = (SHOT_SPEED * 100) / MAX_SHOT_SPEED.

stat_percentage(shot_rate, PERCENTAGE) :-

 player_stat(shot_rate, SHOT_RATE),

 player_stat(min_shot_rate, MIN_SHOT_RATE),

 PERCENTAGE = 100 - ((SHOT_RATE - MIN_SHOT_RATE) * 100) / (10 -

MIN_SHOT_RATE).

stat_percentage(damage, PERCENTAGE) :-

 player_stat(damage, DAMAGE),

 player_stat(max_damage, MAX_DAMAGE),

 PERCENTAGE = (DAMAGE * 100) / MAX_DAMAGE.

The weights of the distribution of the collectibles are dependent on the player’s statistics. Specifically, the

closer a stat is to its maximum (or minimum) value, the higher the probability of generating collectibles that

increase other stats. This dynamic ensures that the player finds more often collectibles that improves their

weaker stats. To better regulate the distribution, it is applied a multiplier to the collectibles weights that

increases the health of the player (medikit and bandages).

item_weights(MEDIKIT_BONUS, BANDAGES_BONUS, SPEED_BONUS * multiplier,

SHOT_SPEED_BONUS * multiplier, SHOT_RATE_BONUS * multiplier, DAMAGE_BONUS *

multiplier) :-

 stat_percentage(hp, HEALTH_PERCENTAGE),

 stat_percentage(speed, SPEED_PERCENTAGE),

 stat_percentage(shot_speed, SHOT_SPEED_PERCENTAGE),

 stat_percentage(shot_rate, SHOT_RATE_PERCENTAGE),

 stat_percentage(damage, DAMAGE_PERCENTAGE),

 MEDIKIT_BONUS = #count { 1 :

 HEALTH_PERCENTAGE <= 25

 },

 BANDAGES_BONUS = #count { 1 :

 HEALTH_PERCENTAGE <= 50

 },

Journal of Advances in Artificial Intelligence

102 Volume 3, Number 1, 2025

 SPEED_BONUS = #count { 1 :

 SHOT_SPEED_PERCENTAGE > 50,

 SHOT_RATE_PERCENTAGE > 50,

 DAMAGE_PERCENTAGE > 50,

 HEALTH_PERCENTAGE > 50

 },

 SHOT_SPEED_BONUS = #count { 1 :

 SPEED_PERCENTAGE > 50,

 SHOT_RATE_PERCENTAGE > 50,

 DAMAGE_PERCENTAGE > 50,

 HEALTH_PERCENTAGE > 50

 },

 SHOT_RATE_BONUS = #count { 1 :

 SPEED_PERCENTAGE > 50,

 SHOT_SPEED_PERCENTAGE > 50,

 DAMAGE_PERCENTAGE > 50,

 HEALTH_PERCENTAGE > 50

 },

 DAMAGE_BONUS = #count { 1 :

 SPEED_PERCENTAGE > 50,

 SHOT_SPEED_PERCENTAGE > 50,

 SHOT_RATE_PERCENTAGE > 50,

 HEALTH_PERCENTAGE > 50

 }.

% Default distribution if collectible types have not been counted yet

collectible_type(X) :- not item_weights(_, _, _, _, _, _),

 X = @delta((

 (none, 4),

 (medikit, 2),

 (bandages, 3),

 (speed_up, 1),

 (shot_speed_up, 1),

 (shot_rate_up, 1),

 (damage_up, 1)

)).

% If collectible types have been counted, I apply a weighted distribution

where the probability of having a collectible of a certain type increases where

the corresponding stat is lower

Journal of Advances in Artificial Intelligence

103 Volume 3, Number 1, 2025

collectible_type(X) :- item_weights(W1, W2, W3, W4, W5, W6),

 X = @delta((

 (none, 4),

 (medikit, 2 + W1),

 (bandages, 3 + W2),

 (speed_up, 1 + W3),

 (shot_speed_up, 1 + W4),

 (shot_rate_up, 1 + W5),

 (damage_up, 1 + W6)

)).

#show collectible_type/1.

5. Evaluation

We compare our proposed approach to the previously proposed methodology presented in Ref. [8],

focusing on computational efficiency and flexibility in the generation process. Without going into much detail,

[8] relies on a two-step process: first, it enumerates all possible floor layouts within specified bounds,

considering parameters such as floor size and room limits; after enumeration, it randomly selects one layout,

discarding all other computed options. This leads to significant computational waste since only one floor is

retained while all others are discarded. Furthermore, the method assigns equal probability to all layouts,

offering limited control over generation diversity or adherence to specific design constraints. In contrast, our

method generates floor elements incrementally. Using a probability distribution, our approach dynamically

constructs floors step by step, adapting to constraints and ensuring that all computed elements contribute

directly to the final result. This way we avoid waste of computation and provide finer control over the

generation process, enabling designers to encode nuanced rules and distributions to guide the content

creation.

To evaluate these two different approaches, we conducted experiments generating 24×24 floors with up to

15 rooms. For Ref. [8], we tested with various bounds on the enumeration limit, measuring execution time

for each configuration. Results are shown in Table 1, where it can be observed that the first 100 answer sets

are produced within roughly the same amount of time. This is due to the eager approach implemented by [8]

Seta et al. [8], which needs to address the full generation process within a single call to the answer set solver.

The answer set solver must then face a nonnegligible grounding task before starting the enumeration of

answer sets. Regarding our method, we repeated the generation process multiple times to account for

variability and averaged the execution time. Results of 25 runs are shown in Table 2, where we report the

number of calls to the server (the GDatalog engine), the cumulated execution time, the number of generated

rooms, and the probability associated with the generated floor.

Table 1. Empirical Evaluation of the PCG Approach Presented in [8]
Limit on the number of answer sets Execution time (s)

1 21.2

10 21.3

100 21.5

1000 66.2

10000 133.5

Journal of Advances in Artificial Intelligence

104 Volume 3, Number 1, 2025

Table 2. Empirical Evaluation of the Proposed PCG Approach

Run
Number of computed answer

sets (calls to the server)
Execution time

(seconds)
Number of

generated rooms
Probability of the

generated floor

1 83 6.9 13 4.82E-45

2 86 7.1 12 1.47E-48

3 70 5.9 10 3.28E-37

4 112 9.3 15 2.32E-61

5 38 3.2 8 2.43E-20

6 93 7.9 14 2.39E-51

7 55 4.6 8 1.32E-29

8 106 8.8 15 1.00E-58

9 103 8.6 14 7.60E-58

10 51 4.2 11 4.76E-28

11 107 8.9 13 1.00E-58

12 62 5.2 9 1.29E-32

13 107 8.9 13 6.00E-58

14 77 6.4 13 5.56E-43

15 74 6.2 10 1.01E-39

16 42 3.5 9 1.26E-22

17 62 5.2 8 5.44E-32

18 45 3.7 8 3.66E-26

19 114 9.5 14 1.63E-61

20 108 9.1 13 5.69E-57

21 90 7.5 12 8.71E-49

22 65 5.4 12 2.05E-38

23 55 4.6 7 8.81E-30

24 107 8.9 15 1.42E-57

25 77 6.4 12 8.89E-41

Average 79.56 6.632 11.52 9.77E-22

The results shown in Tables 1 and 2 demonstrate that our approach is significantly more efficient than

Ref. [8], even under stringent enumeration bounds. Indeed, when the enumeration bound is low, Seta et al.

[8] suffers from a lack of diversity in the generated layouts, while higher bounds introduce impractical

execution times due to the exponential growth in enumeration complexity. For instance, to match the

diversity achieved by our approach, Seta et al. [8] would require enumeration bounds of 1022, which is

computationally infeasible. Anyhow, even limiting the enumeration process to a single answer set, the

approach presented in Ref. [8] takes more than two times the execution time needed by our approach.

Moreover, our approach provides flexibility in controlling generation probabilities and constraints, allowing

the creation of diverse and customized layouts within a practical time frame. These advantages make our

methodology better suited for large-scale and adaptive procedural content generation scenarios, where

efficiency and control are paramount.

6. Related Work

Procedural Content Generation (PCG) has been extensively studied in the literature, with various

Journal of Advances in Artificial Intelligence

105 Volume 3, Number 1, 2025

methodologies proposed to balance creativity, control, and efficiency. We refer Li [14] to a recent overview of

existing research that explores the integration of Artificial Intelligence (AI) into video game development

processes, and focus here on the declarative approaches that have garnered significant attention due to their

ability to clearly encode constraints and logical rules.

Answer Set Programming (ASP) was already used for generating hierarchical structures in roguelike

games [7], highlighting the potential of ASP to manage complex game environments effectively, particularly

for scenarios requiring hierarchical or multistage structures. This was further expanded in a more recent

study [15], which focused on generating dungeons with correct lock-and-key structures. The study proposed

a controllable approach for building graph-based models of acyclic dungeon levels, employing declarative

constraint solving to ensure logical consistency and adherence to gameplay requirements.

ASP was also combined with the Godot game engine [8], in a similar setting to the one considered in this

work. The main difference with respect to the presented work is the way answer sets are produced. In Ref. [8],

several answer sets are non-deterministically computed, each one representing the layout of an entire level

of the game, and one answer set is randomly selected to be shown to the player. Here, instead, the level is

produced according to some probabilistic distributions, and some elements of the game (the collectibles) are

lazily generated. The proposed methodology is therefore more efficient and does not waste computation, as

exactly one answer set representing the level to be shown to the player is generated. It is thanks to such a

different approach that lazy generation is possible without severely impacting on the user experience (for

otherwise, the user would observe a significant loading time at each generation step.

Other relevant works in the literature addressing PCG through different logic-based approaches

include [16–18]. In Ref. [16], the authors introduce a probabilistic logic framework to unify data-driven and

rule-based PCG methodologies. Their work highlights the benefits of Bayesian reasoning to manage

randomness and enforce diversity, offering a structured way to generate content that aligns with designer

intent while adapting to uncertainty. Regarding Ref. [17], it surveys PCG techniques driven by evolutionary

algorithms and metaheuristic search, demonstrating the adaptability of search-based approaches to generate

levels, maps, and rulesets that meet specific quality criteria. As for Ref. [18], the authors explore the use of

ASP as a declarative tool for defining generative spaces explicitly. ASP enables designers to iteratively refine

content generation by encoding constraints and rules directly, fostering greater control over the design space

without extensive procedural rework.

7. Conclusions

This paper introduces a novel methodology for Procedural Content Generation (PCG) using Generative

Datalog (GDatalog), a rule-based logic programming framework enhanced with probabilistic reasoning. By

treating the game state and previously generated elements as logical facts and encoding probabilistic rules

as GDatalog programs, this approach provides a structured and iterative process for content generation. The

resulting framework combines variability, consistency, and adaptability, making it well-suited for dynamic

and evolving game environments. Through the examples and case studies presented, we demonstrate how

GDatalog enables developers to produce diverse, context-sensitive content while adhering to gameplay

constraints. The declarative nature of GDatalog simplifies the definition and modification of generation rules,

offering a modular and reusable structure that can adapt to a wide variety of game genres and design

requirements. Future works include the refactoring of GDatalog programs to produce several elements of the

games within a single call with the aim of further improving efficiency of the PCG process.

Conflict of Interest

The authors declare no conflict of interest.

Journal of Advances in Artificial Intelligence

106 Volume 3, Number 1, 2025

Author Contributions

Mario Alviano and Pasquale Tudda conducted the research; Pasquale Tudda implemented the use case

application; Pasquale Tudda analyzed the data; Mario Alviano and Pasquale Tudda wrote the paper; all

authors had approved the final version.

Acknowledgment

This work was partially supported by Italian Ministry of University and Research (MUR) under PRIN

project PRODE “Probabilistic declarative process mining”, CUP H53D23003420006 under PNRR project FAIR

“Future AI Research”, CUP H23C22000860006, under PNRR project Tech4You “Technologies for climate

change adaptation and quality of life improvement”, CUP H23C22000370006, and under PNRR project

SERICS “SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001; by Italian Ministry of Health (MSAL)

under POS projects CAL.HUB.RIA (CUP H53C22000800006) and RADIOAMICA (CUP H53C22000650006); by

Italian Ministry of Enterprises and Made in Italy under project STROKE 5.0 (CUP B29J23000430005); and by

the LAIA lab (part of the SILA labs). Mario Alviano is a member of Gruppo Nazionale Calcolo Scientifico-

Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

[1] Mohaghegh, S., Dehnavi, M. A. R., Abdollahinejad, G., & Hashemi, M. (2023). PCGPT: Procedural content

generation via transformers. arXiv preprint, arXiv:2310.02405.

[2] Hald, A., Hansen, J. S., Kristensen, J., & Burelli, P. (2020). Procedural content generation of puzzle games

using conditional generative adversarial networks. Proceedings of the 15th International Conference on

the Foundations of Digital Games (pp. 1–9).

[3] Barany, V., Cate, B. T., Kimelfeld, B., Olteanu, D., & Vagena, Z. (2014). Declarative statistical modeling with

Datalog. arXiv preprint, arXiv:1412.2221.

[4] Alviano, M., Lanzinger, M., Morak, M., & Pieris, A. (2023). Generative datalog with stable negation.

Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (pp.

21–32).

[5] Alviano, M., Zamayla, A., et al., (2021). A speech about generative datalog and non-measurable sets.

Proceedings of ICLP Workshops.

[6] Grohe, M., Kaminski, B. L., Katoen, J.-P., & Lindner, P. (2022). Generative datalog with continuous

distributions. Journal of the ACM, 69(6), 1–52.

[7] Smith, G. (2014). Understanding procedural content generation: a design-centric analysis of the role of

PCG in games. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 917–

926).

[8] Seta, D., Alviano, M., et al. (2022). An application of ASP for Procedural content generation in video games.

Proceedings of CILC (pp. 134–140).

[9] Angilica, D., Giorgio, G. M. D., Ianni, G., et al. (2023). On the impact of sensors update in declarative AI for

videogames. Proceedings of ICLP Workshops.

[10] Angilica, D., Ianni, G., Pacenza, F., & Zangari, J. (2023). Integrating asp-based incremental reasoning in

the videogame development workflow (application paper). Proceedings of International Symposium on

Practical Aspects of Declarative Languages (pp. 96–106).

[11] Angilica, D., Ianni, G., & Pacenza, F. (November 19–22, 2019). Tight integration of rule-based tools in

game development. Proceedings of AI* IA 2019—Advances in Artificial Intelligence: XVIIIth International

Journal of Advances in Artificial Intelligence

107 Volume 3, Number 1, 2025

Conference of the Italian Association for Artificial Intelligence, Rende, Italy (pp. 3–17).

[12] Linietsky, J., Manzur, A., & Community, T. G. (2024). Introduction—Godot engine 4.3 documentation in

English. Retrieved from https://docs.godotengine.org/en/stable/about/introduction.html

[13] Ramí rez, S., et al. (2024). FastAPI—Main page. Retrieved from https://fastapi.tiangolo.com/

[14] Li, D. (2024). Artificial Intelligence in the game development process. Journal of Advances in Artificial

Intelligence.

[15] Smith, T., Padget, J., & Vidler. (2018). A. Graph-based generation of action-adventure dungeon levels

using answer set programming. Proceedings of the 13th International Conference on the Foundations of

Digital Games.

[16] Madkour, A., Martens, C., Holtzen, S., Harteveld, C., & Marsella, S. (2023). Probabilistic Logic

programming semantics for procedural content generation. Proceedings of AIIDE 2023 (pp. 295–305).

[17] Togelius, J., Yannakakis, G. N., Stanley, K. O., & Browne, C. (2011). Search-based procedural content

generation: A taxonomy and survey. IEEE Trans. Comput. Intell. AI Games, 3(3), 172–186.

[18] Smith, M., & Mateas, M. (2011). Answer set programming for procedural content generation: A design

space approach. IEEE Trans. Comput. Intell. AI Games, 3(3), 187–200.

Copyright © 2025 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

Journal of Advances in Artificial Intelligence

108 Volume 3, Number 1, 2025

https://docs.godotengine.org/en/stable/about/introduction.html
https://fastapi.tiangolo.com/
https://creativecommons.org/licenses/by/4.0/

