• Jan 02, 2025 News!JAAI will adopt Quarterly Frequency from 2025 !
  • Nov 27, 2024 News!JAAI Volume 2, Number 2 is available now !   [Click]
  • Jul 20, 2022 News!We are delighted to welcome Prof. Abdul Qayyum Khan to the Editorial Board!
General Information
    • Abbreviated Title: J. Adv. Artif. Intell.
    • E-ISSN: 2972-4503
    • Frequency: Quarterly
    • DOI: 10.18178/JAAI
    • Editor-in-Chief: Prof. Dr.-Ing. Hao Luo
    • Managing Editor: Ms. Jennifer X. Zeng
    • E-mail: editor@jaai.net
Editor-in-chief

Prof. Dr.-Ing. Hao Luo
Harbin Institute of Technology, Harbin, China
 
It is my honor to be the editor-in-chief of JAAI. The journal publishes good papers in the field of artificial intelligence. Hopefully, JAAI will become a recognized journal among the readers in the filed of artificial intelligence.

 
JAAI 2024 Vol.2(1): 60-78
DOI: 10.18178/JAAI.2024.2.1.60-78

Enhancing Forecasting Accuracy through Artificial Intelligence-Driven Complexity-Conscious Prediction Modeling

Principal AI Scientist, AISciences.ai, Monroe Township, NJ 08831, USA.
Tel.: 17187025746; email: raghu.etukuru@aisciences.ai (R.E.)
Manuscript submitted January 12, 2024; accepted January 31, 2024; published February 19, 2024.


Abstract—Traditional linear and simpler models often fail to capture the complex, multifaceted nature of real-world data, leading to inaccurate predictions. This research addresses this challenge by exploring the potential of complexity-conscious prediction, which seeks to incorporate the inherent intricacy within the data. The paper aims to demonstrate the significance of acknowledging and incorporating data complexity in forecasting models, especially in domains where accurate predictions are crucial for informed decision-making and can have a profound impact. By employing statistical methods to measure intricate patterns and by developing advanced deep learning models, such as Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), this research endeavors to achieve more accurate and reliable forecasts. Both LSTM and GAN models demonstrated remarkable capability in handling complex time series data, with MAPE values below 3.5%, indicating high accuracy. The GAN model, in particular, showed exceptional performance with a MAPE of less than 2% across all tested stocks, underscoring its advanced predictive capabilities. The findings suggest that deep learning models, especially GANs, substantially improve accuracy over traditional linear forecasting methods. This supports the thesis that integrating data complexity into predictive models through advanced deep learning techniques can significantly enhance forecast precision, thus providing a notable advantage in fields where accurate forecasting is crucial.

keywords—AI-Driven forecasting, complexity-conscious prediction, forecasting accuracy, generative adversarial networks, intricate patterns, time series.

Cite: Raghurami Etukuru, "Enhancing Forecasting Accuracy through Artificial Intelligence-Driven Complexity-Conscious Prediction Modeling," Journal of Advances in Artificial Intelligence vol. 2, no. 1, pp. 60-78, 2024.

Copyright © 2024 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Copyright © 2023-2025. Journal of Advances in Artificial Intelligence. All rights reserved.

E-mail: editor@jaai.net